Parallel performance of MRCPP

b)

Jonas Jusélius,”) Stig Rune Jensen” and Luca Frediani®

a) IT Department, University of Tromsg, Norway
b) CTCC, Department of Chemistry, University of Tromsg, Norway

The MultiResolution Chemistry Program Package (MRCPP) is a quantum chemistry code
based on multiwavelet functions. As for finite element bases the 3D coordinate space is
partitioned in cubic cells, but multiwavelet theory provide the tools to make the represen-
tations adaptive, based on a strict and controlled accuracy criterion.

Essential to any computational chemistry code is the ability to solve the Poisson (1) and
Kohn-Sham (2) equations:

VAV (r) = —4mp(r) (1)
N/2
(V2 + V,(r)i(r) = extbi(r), p(r) = Z 2|2 |)

By rewriting the Poisson and Kohn-Sham equations in their integral form using Greens
functions (see equations below), we avoid the use of derivatives, which is not suited for
finite element bases.

V(r)= /G(r,s)p(s)ds 3)

ulr) = [HO sV (s)i(s)ds @

The formally non-local integral operators decay rapidly to negligible values away from
the main diagonal, yielding an effectively banded structure where the band size is only
dictated by the requested accuracy. This sparse operator structure gives prospects of linear
scaling algorithms, and is crucial for efficient parallel implementations.

A shared memory (OpenMP) parallelization of this code has been achieved, but this
strategy has some limitations, as the maximum number of shared memory CPUs in todays
clusters is limited. Moreover, the relatively large memory requirements demand the use
of a distributed memory (MPI) strategy, where different parts of the function is located
on different MPI hosts. This will inevitably lead to some communication overhead since
the operator will couple terms across MPI domain boundaries, but its banded structure
should limit this communication to close neighbors. This ultimately allows for parallel
algorithms with good scaling behavior with respect to the number of CPUs.

We present a hybrid MPI/OpenMP implementation where we combine the fast mem-
ory access of OpenMP, with the massively distributed parallelization of MPI.

